Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury.
نویسندگان
چکیده
A high respiratory rate associated with the use of small tidal volumes, recommended for acute lung injury (ALI), shortens time for gas diffusion in the alveoli. This may decrease CO(2) elimination. We hypothesized that a postinspiratory pause could enhance CO(2) elimination and reduce Pa(CO(2)) by reducing dead space in ALI. In 15 mechanically ventilated patients with ALI and hypercapnia, a 20% postinspiratory pause (Tp20) was applied during a period of 30 min between two ventilation periods without postinspiratory pause (Tp0). Other parameters were kept unchanged. The single breath test for CO(2) was recorded every 5 min to measure tidal CO(2) elimination (VtCO(2)), airway dead space (V(Daw)), and slope of the alveolar plateau. Pa(O(2)), Pa(CO(2)), and physiological and alveolar dead space (V(Dphys), V(Dalv)) were determined at the end of each 30-min period. The postinspiratory pause, 0.7 +/- 0.2 s, induced on average <0.5 cmH(2)O of intrinsic positive end-expiratory pressure (PEEP). During Tp20, VtCO(2) increased immediately by 28 +/- 10% (14 +/- 5 ml per breath compared with 11 +/- 4 for Tp0) and then decreased without reaching the initial value within 30 min. The addition of a postinspiratory pause significantly decreased V(Daw) by 14% and V(Dphys) by 11% with no change in V(Dalv). During Tp20, the slope of the alveolar plateau initially fell to 65 +/- 10% of baseline value and continued to decrease. Tp20 induced a 10 +/- 3% decrease in Pa(CO(2)) at 30 min (from 55 +/- 10 to 49 +/- 9 mmHg, P < 0.001) with no significant variation in Pa(O(2)). Postinspiratory pause has a significant influence on CO(2) elimination when small tidal volumes are used during mechanical ventilation for ALI.
منابع مشابه
An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs.
BACKGROUND In acute lung injury, CO2 exchange is enhanced by prolonging the volume-weighted mean time for fresh gas to mix with resident alveolar gas, denoted mean distribution time (MDT), and by increasing the flow rate immediately before inspiratory flow interruption, end-inspiratory flow (EIF). The objective was to study these effects in human subjects without lung disease and to analyse the...
متن کاملValidity of Spo2/Fio2 Ratio in Detection of Acute Lung Injury and Acute Respiratory Distress Syndrome
Introduction: One ofdiagnostic criteria for Acute Lung Injury and Acute Respiratory Distress Syndrome is pao2/fio2 (PF) ratio 300 for ALI or 200 for ARDS. This criteria requires invasive arterial sampling. Measurement of Spo2/Fio2 (SF) ratio by pulseoximetry may be a reliable non invasive alternative to the PF ratio. Methods and Materials: In a cross sectional study we enrolled 105 sample o...
متن کاملDead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients
INTRODUCTION The inspiratory flow pattern influences CO₂ elimination by affecting the time the tidal volume remains resident in alveoli. This time is expressed in terms of mean distribution time (MDT), which is the time available for distribution and diffusion of inspired tidal gas within resident alveolar gas. In healthy and sick pigs, abrupt cessation of inspiratory flow (that is, high end-in...
متن کاملEarly Effectiveness of Noninvasive Positive Pressure Ventilation on Right Ventricular Function in Chronic Obstructive Pulmonary Disease Subjects with Acute Hypercapnic Respiratory Failure
Introduction: Noninvasive positive pressure ventilation (NIPPV) has become an integral tool in the management of acute hypercapnic respiratory failure (AHRF) in chronic obstructive pulmonary disease (COPD). This study was performed to evaluate the early effects of NIPPV on pulmonary artery pressure (PAP), serum N-terminal pro BNP (NT-proBNP), and ventilatory parameters in the COPD patients with...
متن کاملEstimating respiratory system compliance during mechanical ventilation using artificial neural networks.
UNLABELLED In this study we evaluated whether a technology based on artificial neural networks (ANN) could estimate the static compliance (C(RS)) of the respiratory system, even in the absence of an end-inspiratory pause, during continuous mechanical ventilation. A porcine model of acute lung injury was used to provide recordings of different respiratory mechanics conditions. Each recording con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2008